Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films
نویسندگان
چکیده
Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form standing carbon platelets. High-resolution transmission electron microscopy and Raman scattering measurements reveal that these carbon platelets are comprised of ultrananocrystalline diamond embedded in multilayer-graphene-like carbon structures. The hybrid carbon films are of low electrical resistivity. UNCD grains in the N-UNCD base layer and the hybrid carbon platelets serve as high-density diamond nuclei for the deposition of an electrically insulating UNCD film on it. Biocompatible carbon-based heaters made of low-resistivity hybrid carbon heaters encapsulated by insulating UNCD for possible electrosurgical applications have been demonstrated.
منابع مشابه
Linear stability of electron flow produced by field emission
Related Articles Gold ion implantation induced high conductivity and enhanced electron field emission properties in ultrananocrystalline diamond films Appl. Phys. Lett. 102, 061604 (2013) Direct observation of enhanced emission sites in nitrogen implanted hybrid structured ultrananocrystalline diamond films J. Appl. Phys. 113, 054311 (2013) Evaluation of field emission parameters in a copper na...
متن کاملRoom-Temperature Deposition of DLC Films by an Ion Beam Method, Reactive Magnetron Sputtering and Pulsed Laser Deposition: Process Design, Film Structure and Film Properties
Structural and mechanical properties of diamond-like carbon films deposited by an anode layer source, Thin Solid Films 517 (2009) 6502. spectroscopy of diamond-like carbon films deposited by an anode layer source, Diamond Relat. Mater. 17 DLC films deposited at room-temperature by reactive magnetron sputtering and by an anode layer source – a comparative study, Relation between structural/topol...
متن کاملCryogenic vacuum tribology of diamond and diamond-like carbon films
Friction measurements have been performed on microcrystalline, ultrananocrystalline, and diamond-like carbon DLC films with natural diamond counterfaces in the temperature range of 8 K to room temperature. All films exhibit low friction 0.1 in air at room temperature. In ultrahigh vacuum, microcrystalline diamond quickly wears into a high friction state 0.6 , which is independent of temperature...
متن کاملCVD and applications of standing, dendritic and continuous graphene and their hybrids
Plasma Enhanced Chemical Vapor Deposition (PECVD) and thermal CVD of graphene films, single-domain graphene dendrites, standing graphene structures, hybrid graphene-diamond nanoplatelets, and hybrid graphite-diamond coatings and their properties and applications will be reported. Grain-boundary engineering of CVD thin-film graphene, diamond, and their hybrids allows novel functions of these nan...
متن کاملGraphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp<sup>2</sup>-on-sp<sup>3</sup> Technology
Graphene demonstrated potential for practical applications owing to its excellent electronic and thermal properties. Typical graphene field-effect transistors and interconnects built on conventional SiO2/Si substrates reveal the breakdown current density on the order of 1 μA/ nm (i.e., 10 A/cm), which is ∼100× larger than the fundamental limit for the metals but still smaller than the maximum a...
متن کامل